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ADIABATIC COMPRESSION OF A GAS BY MEANS OF A SPHERICAL DRIVER 

Ya. M. Kazhdan UDC 533.21 

w A spherical driver* with an initial radius ro within which there is a gas at rest 
(~ is the polytropic index; co is the velocity of sound) starts to converge toward the center 
at a certain time. The problem is the determination of that driver trajectory for which all 
8 characteristic curves emerging from it converge at the center of the time of collapse of 
the driver, which is taken to be the origin of the time scale, t ffi O, in the following. In 
this case the motion of the gas within the driver will be spherically symmetric, isentropic, 
and self-similar. We take ~ = cot/r as the self-similar variable, and the gasdynamical func- 
tions are represented in the form 

u = r / t u l ( ~ ) ;  c = r / t c i ( ~ ) .  

In the r--t plane, the flow will be separated from the region at rest by the character- 
istic curve r = --cot (n = --i). The functions u, (~) and c~ (~) are defined by the equation 

*A s o l u t i o n  i s  g i v e n  i n  [1] f o r  t h e  c a s e  o f  a p l a n e  d r i v e r .  A s e l f - s i m i l a r  s p h e r i c a l l y  sym- 
m e t r i c  c o m p r e s s i o n  wave was a l s o  c o n s i d e r e d  by I .  E. Zababakhin  and V. A. Simonenko.  ( P r i -  
v a t e  communication -- Ya. K.). 
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with the initial conditions 

u1=0, c~=l~ 

and by the quadrature 

2 
r (u 1 _  t)~ ~ c t  2 d:~. ( 1 . 2 )  

2 
The point M (u~ = 0, ci = i) is a singular point of Eq. (i.i). The nature of the singularity 
is a node. The separating strand of the node is u: = 0. The asymptote corresponding to the 
general direction is 

c~ ~ t + (• + 1) u 1 In  u i + Aui, 
where A is an arbitrary constant. 

The integral curves of Eq. (i.i) which intersect the curve L [(ul --1) 2 = c~] outside 
singular points correspond to flow in which shock waves arise, i~ the characteristic 
curves intersect before collapse of the driver. In fact, according to the quadrature (1.2), 
u: and c~ cease to be single-valued functions of ~ in this case. It is clear from the dia- 
gram shown for the isoclines for Eq. (i.i) that only the integral curve connecting the 
singular points M and N [u~o = 2/(3~ i), 2 = -- c~o 3(~-- i) 2/(3~-- i) 2] does not intersect 
the curve L [analysis of Eq. (i.i) indicates that no integral curve passes through the point 
u, =-+=, c~ = =] (Fig. i). 

The singular point N is a saddle point. It is therefore appropriate to make a numerical 
determination of the integral curve MN between the points M and N. To do this, we make the 
following substitution of variables in Eq (i.I): x = c~ = �9 -- czo, y = u~ -- u~o. To the separa- 
trix of the saddle N going to the point M there corresponds the expression 

dg = 2 (t - -  3x) 
d x  x=0 

According to the quadrature (1.2), the value ~ = 0 corresponds to the point N. Since the 
integrand in the quadrature (1.2) goes neither to zero nor infinity in the interval 1 > c~ > 
3(~-- i)2/(3~-- i) =, n increases from--i to 0. The curve u~(n), c:(n) corresponding to the 
integral curve of Eq. (i.i) that connects the points M and N will be the desired curve. In 
fact, the B characteristic curves are defined by the equation 

dt t 
e~-~ = =,~ [~ + ~, - ~ ] ' -  ( 1 . 3 )  

Since the integral curve MN outside the point M corresponding to ~ = --i does not intersect 
the curve L, the denominator on the right side of Eq. (1.3) is different from zero in the 
interval --i < ~ < 0 and the entire right side is positive for t < 0. Thus, n is a monoton- 
ically increasing function of t and a single characteristic curve passes through each point 
(t < 0, n < 0). 

o r  

The asymptote to any B characteristic curve when n § 0 has the form 

( - -  t) --, ( - -  ~)(3~-1)/[(3--V~(• (1.4) 

r ,m~ K ( - -  t)% where = = [2 + ] / ~ •  - -  1 ) ] / ( 3 •  I) ,  

and the asymptote to any trajectory, in particular the driver trajectory, when ~ § 0 is 

( - -  t) . . .  ( - -  ~)(a~-~)/a(.-~) -or r ~ C ( - -  t)2l(a~-~> 

Here K and G are positive constants corresponding to a given characteristic curve or a given 
trajectory. The trajectory of the driver can be determined numerically by integration of 
the equation 

td~/dt = ~ ( l - - u ~ ) ,  t = - - ~ o ,  ~ = ' - - t -  

In the neighborhood of the driver, the asymptotes of the gasdynamical functions appear 
to be the following: density, -r-3; velocity and sound velocity, ~r3(~-~)/=; pressure, ~r-3~; 
temperature, ~r3(~-w). These asymptotic values are also valid for other modes of adiabatic 
compression of a gas [2-4]. 
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w An abrupt deceleration of the driver at some time t,(to < t~ < 0) entails a dis- 
turbance of the resultant solution for a centered rarefaction wave with a peak at the point 
r,, t~ (r, is the distance of the driver from the center at the time t,). The limit of the 
disturbance is the 8 characteristic curve of the original solution emerging from the point 
(r,, t,) if no 8 characteristic curve of the disturbed flow intersects it in the interval 
t, < t < 0. For this, it is necessary that 

u = Uo(t) + u l ( t ) ( g -  t )  + u2(t ) (g  - -  t )  ~ + . . . ,  ( 2  1 )  

C 2 = / = fo(t) + l~(t)(g - -  1) + f~(t)(g - -  t) 2 + . . . ,  

as the asymptotic representations of the functions in its neighborhood, where g = r/~(t); 
r = ~ (t) is the equation for this separating S characteristic curve; the coefficients ui(t) 
and fi(t) are finite in the interval t~ < t < 0 and ui(t)/uo(t) ~ 0(i) for t + 0. It is 
obvious that u~(t) and fo(t) are values of the corresponding functions on the 8 character- 
istic curve r = ~ (t) obtained in the original solution. The equations defining them and the 
function ~(t) and the initial data have the form 

du.___o = 2uo/ot . 
dt [(u o+co)  t - f f ] ~  ' 

dlo 2 (• - -  1) /o ( u o t - -  r . de  
d'-Y = - -  [(uo + ~o) t - -  r ~ ' d--7" = Uo - -  co; co = V-~o; 

2 2 2  
t = q :  uo = r~/t lux (cot~/rl); 1o = r~/t~c~ (cot~lr~); ~ = r~. 

The functions f~ (t) and u~(t) are defined by a single differential equation 

2q)df l /  d t  + 11 [2 (• - -  2) uoc o - -  (• + 2)~duo/dt  - -  r o - -  

- -  (• -4- t )  f2/(:~ _ t)9o _~_ (• _ t )  {q~2 [cod,,uo/dt 2 _ (duo/dto)~ ] _ 

- - ~ d u o / d t  (q~dcoldt-4- 2 / o ) } / C o -  2 ( •  t)Uo/o = 0 ( 2 . 2 )  

and the final relation 

ul  = - -  [/1/(x - -  t )  q- r o. ( 2 . 3 )  

Initial data for the function f,(t) can be obtained from consideration of the rarefac- 
tion wave at times Close to the time t,. Asymptotic values of the functions u and f for 
small values of t -- t, are represented in the form [5] 

u = Uo(~)  + u ~ ( ~ ) ( t  - %) + u ~ ( ~ ) ( t  - t~) ~ + . . . .  

/ = Fo(~) -f- F l (~ ) ( t  - -  tl) q- F,,(~)(t - -  t~) 2 + . . . .  ( 2 . 4 )  

~ = (r - - q ) / ( t - -  h ) .  

It is evident that 

>~ ~o = ~ ' ( t l )  = Uo(tO - Co(t1). 

The  f u n c t i o n s  U o ( ~ )  a n d  F o ( ~ )  a r e  k n o w n  s e l f - s i m i l a r  s o l u t i o n s  f o r  a p l a n e  r a r e f a c t i o n  w a v e  

U0(~) = [(h - -  t ) /h ]~  q- A / h ,  Fo(~) = (~ - -  A)2 /h  2, 

where 

h = (• q- t ) / (•  - -  t) ;  A = uo(t~) q- (t~ - -  t)co(q). 

Expressions can also be obtained for the functions Ui(~) and Fi(~). In particular, 

U,(~)  = - -  r-q" (h - -  i) (2 - -  h) h -~" 4 - - h  "4" B l o T )  l' ( 2 . 5 )  

2h 
F1 (~) = (x  - i )  u x  (~) - ( - V ~ ,  h " �9 

The constant B is determined by matching the asymptotic values (2.4) with the values of the 
functions on the characteristic curve r = ~(t). In the cases h = 2 and h = 4, the terms in 
Eq. (2.5) having coefficients going to infinity are respectively replaced by in[(~ --A)/h] 
and (~ --A)/h in [(~ --A)/h] with finite coefficients. The definitions of g and ~ indicate 
that the asymptotic relation 

. ~ - -  ~ ~ [,~(%)/(t - -  h )  + r  - t )  
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is valid for small values of t -- t~, 
totic value 

] = Fo (~o) + F1 (~o)(t - -  tl) -[- [F~ (~ )  ~- F~ (~o)(t - -  t~)] • [~ (tl)/(t  - -  t~) -[- ~'  (t~)] (g  - -  t ) .  

Consequently, for small values of t -- t~, 

f ,  (t) ~ [F~ (~o) -t- F]  (~o) (t - -  tOl [~ (t)/(t - -  tl) -4- ~ '  (t~)]. 
! 

Since Fo(~O) # 0, and ~'(t~) and F~(~o) are finite, in the leading term 

f l  (t) ~ Fo (~o) ~ (t~)/(t - -  t~). 

Thus it is necessary to determine the function f~(t) satisfying Eq. (2.2) 
the asymptotic value (2.6) for t § t~. Equation (2.2) is a Riccati equation. 
ular solution corresponding to the expansion (2.1) in the undisturbed region is well known: 

- -  4Uofo(uot-- ~) t  
(~(t)  = : l i t - -  l ) ( ~ ' t - -  ~)[(uo+co)t--  ~]" 

Through the substitution 

~-- ~o, and g-- i, and we have from Eq. (2.4) the asymp- 

= -: ~ ( / -  ~9) 

Eq. (2.3) is reduced to the linear equation 

d z / d t - - L ( t l z  + D ( t ) - -  O, 

w h e r e  

(2.6) 

and having 
Its partic- 

D(t) =-: (• -~- l ) , [ 2 ( z  - - ! ) r  
p 

L ( t )  2( •  uoco(uot--~)t  __, 2 ( •  UoCo--(• 
T (qg't--q~)I(Uo+Co)t--q~] ' 2q~c o 

The particular solution ~(t) is finite in the interval to < t < 0, since the selected 
integral curve of Eq. (i.i) does not intersect the curve L [(u~ --!) 2 = c~]. Consideration 
of Eq. (2.6) indicates that when t § t~, 

t - - t  l 
Z . ~ .  - + 0  

q~ (tl) F'o (~o) - �9 (t~) 

and, consequently, 

(t) = j ( t )~xp  - [ (~) ~xp (~) d~ 
t, t, i, 

Since L(t) is finite and D(t) conserves its sign in the interval tl < t < 0, z(t) # 0 in 
that interval and the function f:(t) = ~(t) + i/z(t) is finite because of the finiteness of 
~(t). The finiteness of u1(t) follows from Eq. (2.3) because the function Co(t) # 0 in the 
half-open interval t: < t < O. The functions fn and u n are determined from the linear equa- 
rtiOn and final relation 

{[r -[- u~ / l  + 2 u , , - t f 2  + n (u l  - -q) ' ) /=] / ( •  - -  1) + 2 I o [ ( - - I )  = u o + 

+ ( - -  t ) " - t u x  + . . .  + u~] + . . .  + [~ (u~  + 2uo) } -  ] / ~ o { c p d u J d t  + u=ul  + 2u , - t u~ .  + . . .  + n ( u ~ - -  qg')u=} = 0, 

fn = - -  (~ - -  t )  {V~ottn -~- [q)Un--I -~- Un--t/,tl --~ 2/,tn--2tt 2 --~ �9 . . -~ (/'t - -  1)(U 1 - -  q)') ttn--~.]/n}. ( 2 . 7 )  

On the half-open interval t~ < t < 0, the coefficient of the derivative is different 
from zero and the remaining terms are finite; consequently, un(t ) and fn(t) are finite on 
this half-open interval. 

w The results obtained provide an opportunity to determine an asymptotic value for 
the disturbed flow in the neighborhood of the center at t § 0 near the separating B charac- 
teristic curve r = ~(t). Since the singular point N [u~o = 2/(3~-- I), c~o = 3(~-- i)2/ 
(3~-- i) 2] of Eq. (i.i) corresponds to ~ = 0, then according to Eqo (1.4) 

Uo(t) --= r , ~ -  2/(3•  - -  I ) K ( - -  t) '~-t ,  
fo(t) -= (~(t)/t)~fl(~l)n-~o ~ 3(• - -  GV(3•  - -  t )  ~ K2( - t) 94c~-t), 
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because of which we have from Eq. (2.3) 

(3--]/~) (5. -- 3) K (_  t)=_~, u~(t)~ ] / ~ ( 3 ~ - i )  ( ~ +  t) 

,-, ( V s -  3) (3~r - 5) (• - t)* K2 ( t ) 2 ( r  
I(~) ~ ' ' '  (3~__ i)~ (z_~ i) -- . 

That un(t) and fn(t) are of the same order of magnitude follows from Eq. (2.7); substi- 
tution of the expressions obtained in Eq. (2.1) yields the asymptotic value for t + 0 near 
the separating 8 characteristic curve r = ~(t), 

u ~ , _ K ( _ t ) ~ - ' [ 3 2  - (3-- ]/3) (5~-- 3) r 1 ...], 
1 "V3 (3~ - -  t) (x + t)  ( ~ - - ) +  

(3 . i )  
] ~,.~ K~ ( ,  t )2("-- t)  [ 8  (~: - -  t ) '  -U ( ] / 3 - -  3) ( •  ( 3 z - -  5) ( r t ) " ~ -  . . ] .  

�9 L (3~r - -  i )  ~ `  ~ ~ (3-'3-x~]'~" , K  ( - -  t) = 

Equations (3.1) provide a basis for seeking the asymptotic value in the neighborhood of the 
center when t + 0 in the form 

u -+-Kltl=-t~w(~), f =  KZ]ti2(a-~)~2F(~), ~=rltl-=/K(§ ~ r  t > 0 , - -  ~ r  t < 0 ) .  ( 3 . 2 )  

The functions w and F are defined by the equation 

dF (3• (3.3) 
= F [3 ( 3 ~ -  1) w - 2 (3 - 1/3)1 + (3~ - t )  w ( t - w )  (w-=)  

with the initial data 

and by the quadrature 

w = wo = 2 / (3 •  - -  t ) ;  F = F o = 3(•  - -  t )2 / (3•  - -  t )  * 

= exp 
'Wo 

[(w - -  r - -  F] (3• - -  t) dw 
F 13 (3x - -  t) w - -  2 (3 - -  "Y3)l + ( 3 •  w ( t - w )  (w-r162 ~, 

( 3 . 4 )  

The initial point (wz, Fo) is a node for Eq. (3.3). This is clear from the isocline 
diagram (Fig. 2). From the condition for matching the solution of Eq. (3.3) to the asymptot- 
ic value (3.1), it follows that emergence from the node must be along the direction of its 

separating strand, 

dF/dw = "1/3"(• - -  t )2 / (3n  - -  t )  ( 3 . 5 )  

in order to provide an increase in ~ in the direction of decreasing w. Since F ffi 0 is an 
integral of Eq. (3.3), the selected integral curve unavoidably reaches the origin w = O, 
F = 0 (see Fig. 2). This point is a dicritical node and in its neighborhood 

F ~ ,  A w  ~ (A > 0 - -  arbi t rary  constant) .  ( 3 . 6 )  

The quadrature (3.4) indicates that the value ~ = ~ corresponds to this point, i.e., the 
line t = 0, where 

~ ur-=. ( 3 . 7 )  

Further continuation of an integral curve of Eq. (3.3) leads to intersection with the 
curve L [F = (w- u) 2]. In this case, the uniqueness of the functions w(~) and F(~) breaks 
down, which means the formation of a reflected shock wave. 
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w Because of self-similarity, the line ~ = ~b = cons, corresponds to the reflected 
shock front, and conditions in the shock wave can be represented in the form 

p~ =- ~0 (~) ~0 (~) + u [= - ~~ (~)]~ (z + ~) p,~ + (u- i) 00F~ 
p'-~ = ~ - ~ (~)  = ~ (~)  + ~ [~ - ~ ( ~ ) l  ~ = ( ~ -  ~) ~ F ~  + (~ + ~) ~o~o" ( 4 . 1 )  

The ratio of densities and of the squares of the sound velocities, and, consequently, 
of the pressures, is constant. Since the flow ahead of the shock front is isentropic, it 
remains that way behind the front. Thus Eq. (3.3) and the quadrature (3.4) also describe 
the flow behind the reflected shock front. The initial data are determined bythe require- 
ments for zero velocity and for the finiteness of the velocity of sound at the center for 
times t > O. The quantity ~ at the center is zero for t > 0. Therefore, the velocity of 
sound at the center can be finite only under the condition F(0) = ~. Then, as follows from 
the quadrature (3.4), the value of ~ goes to zero only for the value w(0) = 2(3 -- /3)/3(3~-- 
i). Considering this, it is convenient to study the solution in the neighborhood of the 
center at times t > 0 in the variables 

= l / F ;  ~ = w - - w ( O ) .  

In that case, Eq. (3.3), the initial data, and the quadrature (3.4) take the form 

d_z.Z = _ 2 q-  { - - 2 •  (v q-  w (0)) ~ + [5 - -  • if- 1 / 3  ( •  ('~q-w) (0 ) - -2~ )} .  
x d~ 3 ~ + ( ~ §  " , 

j~ (4.2) 
[~ q-  w (0) - -  z.] ~ X - -  i d~ .  

= ~b e x p  3~ + (T q- w (0)) ( i  - -  w (0) - -  T) (~ § w (0) - -  ~)  7. 
% b )  

The point X = 0, T = 0 is a singular point of Eq. (4.2). The singularity is a saddle point. 
The desired integral curve is the separatrix of the saddle with the angular coefficient of 
the tangent initially 

d__z~ = i 35  (3• -- t )  2 

dT 2 l / ~  (3 _ ]/-~) [9 (~ r  l )  q-  2 V ~ ]  

The wave front and the values of the gasdynamical functions on it are determined in the 
following manner. Values of w~, f~ are determined from Eq. (4.1) for each point wo, fo of 
the integral curve of Eq. (3.4) when wo < 0. The point of intersection of the curve F~ = 
F1(w~) obtained in this manner with the integral curve of Eq. (4.2) corresponds to the values 
of the gasdynamical functions on the wave front, and the corresponding value of ~b is deter- 
mined from the quadrature (3.4). From numerical calculations performed for the value ~ = 
5/3, we obtain in this way the values ~b = 6.9826, wo(~b) =--0.22115, Fo(~b) = 0.38587, 
w~(C b) = 0.24992, and FI(Cb) = 0.62893~ According to the representation (3.2) of the func- 
tions, we find that at the reflected shock front the velocity u ~ r(r162215 
the density 0 ~ r=(r215 the pressure p ~ r2~(r215 and the tem- 
perature T ~ r2(•162 From the asymptotic values (3.6) and (3.7) it fol- 
lows that these quantities are of the same order of magnitude on the line t = 0 also and the 
asymptotic value (3.5) indicates that density ~t (r - ), pressure ~t (/~-)/( - ), 
and temperature ~ta(• at the center for t > 0 and t § 0. 

The author is grateful to L. V. Al'tshuler for proposing this problem, to G. Kh. Solov'ev 
and A. E. Lutskyi for numerical computer calculations, and to N. I. Kurancheva for formula- 
tion of the work. 
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